Filters
Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation

İbrahim İlker ÖZYİĞİT

Article | 2019 | Biotechnology and Biotechnological Equipment33 ( 1 )

Although stresses induce generation of reactive oxygen species (ROS), which are highly reactive and toxic, and cause severe damage to cellular components; plants have very efficient enzymatic ROS-scavenging mechanisms. Despite the substantial knowledge produced about these enzymes, we still have limited knowledge regarding their expression patterns in relation to the stress type, duration and strength. Thus, taking advantage of microarray data, this work evaluated the abiotic stresses (salt, cold, heat and light) induced regulation of six antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), gl . . .utathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), in 10 natural Arabidopsis ecotypes. The expression profiles of 36 genes encoding six enzymatic antioxidants including CSD1-3, FSD1-3, MSD1-2, CAT1-3, APX1-6, APXT, APXS, GPX1-8, MDAR1-5 and DHAR1-4 were investigated. In particular, FSD1, FSD2, CSD1 and CSD2 genes coding for SOD; CAT2 and CAT3 for CAT; APX3-6, APXT and APXS for APX; GPX1, GPX2, GPX5, GPX6 and GPX7 for GPX; MDAR2-4 for MDHAR; and DHAR1 and DHAR3 for DHAR families appeared to be more differentially expressed under given stress conditions. Primarily, high light as well as salt and cold stresses considerably up-regulated the gene expression, whereas cold stress significantly led to the down-regulation of genes. The overall expression pattern of ecotypes suggested that the studied Arabidopsis genotypes had different stress tolerance More less

Exploration of two major boron transport genes BOR1 and NIP5;1 in the genomes of different plants

İbrahim İlker ÖZYİĞİT

Article | 2020 | Biotechnology and Biotechnological Equipment34 ( 1 )

Boron (B) is an essential plant micronutrient but studies regarding its transport are still limited to a few plants. This work identified two major B transport sequences in plants, NIP5;1 boric acid channel protein and BOR1 transporter. 80 BOR1 and 34 NIP5;1 homologs were identified in 18 different plant genomes. BOR1 homologs had a HCO3-transporter domain, 649-737 amino-acid residues with mainly basic nature, putative 8-11 transmembrane domains (TMDs) and 11-13 exons. NIP5;1 homologs had a MIP family domain, 294-311 amino-acid residues with basic nature, 5-6 putative TMDs and 3-5 exons. Tyrosine-based motif, acidic di-leucine motif . . . and lysine residue, reported for polarity, vacuolar sorting and B-dependent degradation, were identified in BOR1 homologs. Two NPA motifs and an ar/R selectivity filter with AIGR residues, reportedly essential in B transport, were also found in NIP5;1 homologs. Two NPA motifs in AtNIP5;1 and OsNIP3;1 homologs were NPS and NPV, whereas in sequences homologous to AtNIP6;1 were NPA/V. Besides, ar/R selectivity filters were identified with A(N/S/T)IGR residues in NIP5;1 and NIP3;1 homologs. The BOR1 and NIP5;1 model structures were mainly conserved. Under different perturbations, Arabidopsis thaliana NIP5;1 and NIP6;1 genes demonstrated similar expression patterns although they act in different tissues, suggesting a common regulatory mechanism, whereas BOR1 showed a different expression pattern. BOR1 was substantially expressed in primary root, radicle and flower; NIP5;1 in primary root and roots, and NIP6;1 in petiole. NIP5;1, 6;1 and BOR1 expression in other plant organs implied their involvement in different pathways in addition to B uptake and its mobilization More less

Assessment of Cd-induced genotoxic damage in Urtica pilulifera L. using RAPD-PCR analysis

İlhan DOĞAN

Article | 2016 | Biotechnology and Biotechnological Equipment30 ( 2 )

Plants can be used as biological indicators in assessing the damage done by bioaccumulation of heavy metals and their negative impact on the environment. In the present research, Roman nettle (Urtica pilulifera L.) was employed as a bioindicator for cadmium (Cd) pollution. The comparisons between unexposed and exposed plant samples revealed inhibition of the root growth (∼25.96% and ∼45.92% after treatment with 100 and 200 µmol/L Cd concentrations, respectively), reduction in the total soluble protein quantities (∼53.92% and ∼66.29% after treatment with 100 and 200 µmol/L Cd concentrations, respectively) and a gradual genomic instab . . .ility when the Cd concentrations were increased. The results indicated that alterations in randomly amplified polymorphic DNA (RAPD) profiles, following the Cd treatments, included normal band losses and emergence of new bands, when compared to the controls. Also, the obtained data from F1 plants, utilized for analysis of genotoxicity, revealed that DNA alterations, occurring in parent plants due to Cd pollution, were transmitted to the next generation. - Keywords: RAPD-PCR, genotoxicity, cadmium (Cd), Roman nettle, heavy metal More less

Functional profiling of bacterial communities in Lake Tuz using 16S rRNA gene sequences

Yılmaz KAYA

Article | 2021 | Biotechnology and Biotechnological Equipment35 ( 1 )

The 16S rRNA amplicon sequencing technique is a key aspect of studies of microbial communities but does not provide direct evidence of a community

Screening of damage induced by lead (Pb) in rye (Secale cereale L.) – a genetic and physiological approach

İlhan DOĞAN

Article | 2016 | Biotechnology and Biotechnological Equipment30 ( 3 )

The fields in which lead (Pb) finds application in the modern world have increased dramatically in recent years. As a consequence of this intensive utilization of Pb, its toxicity tends to pose more and more environmental problems. The aim of this study was to evaluate the genotoxic potential of Pb and to characterize some physiological parameters in Secale cereale under Pb stress. Plants were subjected to different exposure levels of Pb (0, 100, 200 and 400 µmol/L) for two weeks. At the end of the experimental period, the effects of Pb exposure on the photosynthetic pigments content (chlorophyll a and b, total chlorophyll, chloroph . . .yll a/b and carotenoids) and genetic material of S. cereale were studied. To evaluate the genotoxic effect of Pb, random amplified polymorphic DNA – polymerase chain reaction (RAPD-PCR) was employed. The obtained results showed alteration in the photosynthetic pigments content and RAPD-PCR profiles of S. cereale grown in the presence of Pb. The alterations in the RAPD-PCR profiles following Pb treatments appeared to be losses of normal bands and occurrences of new bands compared to unexposed plantlets. Overall, the content of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids decreased by 6.68%, 6.08%, 2.89% and 8.57%, respectively, under severe Pb stress (400 µmol/L). Keywords: RAPD-PCR, genotoxicity, heavy metal, accumulation, photosynthetic pigment More less

The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan

Zeki SEVEROĞLU | İlhan DOĞAN | Gülbübü KURMANBEKOVA

Article | 2015 | Biotechnology and Biotechnological Equipment29 ( 6 )

Uncontrolled and unplanned urbanization and industrialization due to increase of population and rapid industrial development have created severe environmental problems in Kyrgyzstan during the last few decades. In this study, Juniperus virginiana, a dioecious species, was employed in order to make assessment of the heavy metal pollution rate in the area and of the heavy metal pollution impact on the mineral nutrient status of the plant. For this study, leaf (washed and unwashed) and bark samples of J. virginiana, and its co-located soil samples were collected from eight different stations, all in the capital of Kyrgyzstan, Bishkek, . . .in 2012 vegetation period. The standard procedures were used and the determinations of heavy metal and nutrient element contents (Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) in all samples were done using inductively coupled plasma-optical emission spectroscopy. According to our measurements, J. virginiana was found to be capable of accumulating a considerable amount of metals and the mineral nutrient uptake pattern was altered because of metal deposition in the plant, which showed a contamination risk in the area. - Author Keywords: Juniperus virginiana; heavy metal pollution; mineral nutrient status; Bishkek; Kyrgyzsta More less

Morphological variation, genetic diversity and phylogenetic relationships of Hypericum triquetrifolium Turra populations from Tunisia

İbrahim İlker ÖZYİĞİT

Article | 2021 | Biotechnology and Biotechnological Equipment35 ( 1 )

Hypericum triquetrifolium Turra is an ecologically, medicinally and economically important species in Tunisia. Thirty-six Hypericum individuals sampled from 6 northern Tunisian locations were investigated for their diversity and relationships using 10 inter-simple sequence repeats (ISSR) markers and 10 morphological features at vegetative stage. The phylogenetic analysis, using 308 bp of sequenced ITS1 region, identified the Hypericum individuals as H. triquetrifolium that clustered with members of genus Hypericum section 9, 9a, 9b and 27, in agreement with the previous molecular classification of the genus. Among the 10 ISSR marker . . .s tested, 7 were scorable and yielded 91 loci with 94.5% of polymorphism. UBC848 and UBC836 were the most polymorphic ISSR markers. The level of genetic diversity (HT = 0.247) and gene flow between the six populations (N (m) = 1.169) were moderate. The structure analysis revealed three genetic subpopulations: individuals of Le Krib location formed a subpopulation divergent from two other subpopulations, probably due to its northwestern and high-altitude geographic barriers, and its sub-humid microclimate. Zaghouan, northeastern location in the lower semi-arid, with the highest genetic (I = 0.370) and morphological (I = 0.631) Shanno More less

Comparative analyses of phytochelatin synthase (PCS) genes in higher plants

İbrahim İlker ÖZYİĞİT

Article | 2019 | Biotechnology and Biotechnological Equipment33 ( 1 )

Plants employ various defence strategies to ameliorate the effects of heavy metal exposures, leading to re-establishment of metal homeostasis. One of the strategies includes the biosynthesis of main heavy metal detoxifying peptides phytochelatins (PCs) by phytochelatin synthase (PCS). In the present study, 14 PCS homologues were identified in the genomes of 10 selected plants. The size of these PCSs was 452-545 amino acid residues, with characteristic phytochelatin and phytochelatin_C domains. The N-terminal site of the proteins is highly conserved, whereas the C-terminal site is less conserved. Further, the present study also ident . . .ified fully conserved Cys residues involved in heavy metal binding reported earlier. In addition, other preserved cysteines, with minor substitutions Cys(C)-> Ser(S) or Tyr(Y) or Trp(W), were also identified in the PCS sequences that might be associated with metal binding. The reported catalytic triad residues from Arabidopsis, Cys56, His162 and Asp180, are all conserved at the respective sites of PCSs. A clear monocot/dicot separation was revealed by phylogenetic analysis and was further corroborated by the exon-intron organisations of the PCS genes. Moreover, gene ontology terms, co-expression network, cis-regulatory motif and miRNA analyses indicated that the complex as well as dynamic regulation of PCSs has significant involvement in different metabolic pathways associated with signalling, defence, stress and phytohormone, in addition to metal detoxification. Moreover, variations in protein structure are suggested to confer the functional divergence in PCS proteins More less

Our obligations and policy regarding cookies are subject to the TR Law on the Protection of Personal Data No. 6698.
OK

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms